Number Sense		
Third Grade	Fourth Grade	Fifth Grade
3.NS.1: Read and write whole numbers up to 10,000 . Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to 10,000 .	4.NS.1: Read and write whole numbers up to $1,000,000$. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to $1,000,000$.	5.NS.3: Recognize the relationship that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right, and inversely, a digit in one place represents $1 / 10$ of what it represents in the place to its left. 5.NS.4: Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10 . Use whole-number exponents to denote powers of 10.
3.NS.2: Compare two whole numbers up to 10,000 using $>,=$, and < symbols.	4.NS.2: Compare two whole numbers up to 1,000,000 using >, =, and < symbols.	
3.NS.3: Understand a fraction, $1 / \mathrm{b}$, as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction, a / b, as the quantity formed by a parts of size $1 / b$. [In grade 3 , limit denominators of fractions to $2,3,4,6,8$.]	4.NS.3: Express whole numbers as fractions and recognize fractions that are equivalent to whole numbers. Name and write mixed numbers using objects or pictures. Name and write mixed numbers as improper fractions using objects or pictures.	5.NS.2: Explain different interpretations of fractions, including: as parts of a whole, parts of a set, and division of whole numbers by whole numbers.
3.NS.4: Represent a fraction, $1 / \mathrm{b}$, on a number line by defining the interval from 0 to 1 as the whole, and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line.		
3.NS.5: Represent a fraction, a / b, on a number line by marking off lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b, and that its endpoint locates the number a / b on the number line.		
3.NS.6: Understand two fractions as equivalent (equal) if they are the same size, based on the same whole or the same point on a number line.	4.NS.4: Explain why a fraction, a / b, is equivalent to a fraction, $(n \times a) /(n \times b)$, by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions. [In grade 4, limit denominators of fractions to 2, 3, 4, 5, 6, 8, 10, 25, 100.]	
3.NS.7: Recognize and generate simple equivalent fractions (e.g., $1 / 2=$ $2 / 4,4 / 6=2 / 3$). Explain why the fractions are equivalent (e.g., by using a visual fraction model).		
3.NS.8: Compare two fractions with the same numerator or the same denominator by reasoning about their size based on the same whole. Record the results of comparisons with the symbols $>,=$, or <, and justify the conclusions (e.g., by using a visual fraction model).	4.NS.5: Compare two fractions with different numerators and different denominators (e.g., by creating common denominators or numerators, or by comparing to a benchmark, such as $0,1 / 2$, and 1). Recognize comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols $>$, $=$, or $<$, and justify the conclusions (e.g., by using a visual fraction model).	5.NS.1: Use a number line to compare and order fractions, mixed numbers, and decimals to thousandths. Write the results using $>,=$, and < symbols.
	4.NS.7: Compare two decimals to hundredths by reasoning about their size based on the same whole. Record the results of comparisons with the symbols $>,=$, or $<$, and justify the conclusions (e.g., by using a visual model).	
3.NS.9: Use place value understanding to round 2-and 3-digit whole numbers to the nearest 10 or 100.	4.NS.9: Use place value understanding to round multi-digit whole numbers to any given place value.	5.NS.5: Use place value understanding to round decimal numbers up to thousandths to any given place value.
	4.NS.6: Write tenths and hundredths in decimal and fraction notations. Use words, models, standard form and expanded form to represent decimal numbers to hundredths. Know the fraction and decimal equivalents for halves and fourths (e.g., $1 / 2=0.5=0.50,7 / 4=13 / 4=$ 1.75).	5.NS.6: Understand, interpret, and model percents as part of a hundred (e.g. by using pictures, diagrams, and other visual models).
	4.NS.8: Find all factor pairs for a whole number in the range 1-100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range $1-100$ is a multiple of a given one-digit number.	

Algebraic Thinking		
Third Grade	Fourth Grade	Fifth Grade
3.AT.1: Solve real-world problems involving addition and subtraction of whole numbers within 1000 (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	4.AT.1: Solve real-world problems involving addition and subtraction of multi-digit whole numbers (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	
3.AT.2: Solve real-world problems involving whole number multiplication and division within 100 in situations involving equal groups, arrays, and measurement quantities (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	4.AT.2: Recognize and apply the relationships between addition and multiplication, between subtraction and division, and the inverse relationship between multiplication and division to solve real-world and other mathematical problems.	5.AT.1: Solve real-world problems involving multiplication and division of whole numbers (e.g. by using equations to represent the problem). In division problems that involve a remainder, explain how the remainder
3.AT.3: Solve two-step real-world problems using the four operations of addition, subtraction, multiplication and division (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).	(e.g., by using drawings and equations with a symbol for the unknown number to represent the problem), distinguishing multiplicative comparison from additive comparison. [In grade 4, division problems should not include a remainder.]	affects the solution to the problem.
3.AT.4: Interpret a multiplication equation as equal groups (e.g., interpret 5×7 as the total number of objects in 5 groups of 7 objects each). Represent verbal statements of equal groups as multiplication equations.	4.AT.3: Interpret a multiplication equation as a comparison (e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 , and 7 times as many as 5). Represent verbal statements of multiplicative comparisons as multiplication equations.	
3.AT.5: Determine the unknown whole number in a multiplication or division equation relating three whole numbers.		
3.AT.6: Create, extend, and give an appropriate rule for number patterns using multiplication within 1000.	4.AT.6: Understand that an equation, such as $\mathrm{y}=3 \mathrm{x}+5$, is a rule to describe a relationship between two variables and can be used to find a second number when a first number is given. Generate a number pattern that follows a given rule.	5.AT.8: Define and use up to two variables to write linear expressions that arise from real-world problems, and evaluate them for given values.
	4.AT.5: Solve real-world problems involving addition and subtraction of fractions referring to the same whole and having common denominators (e.g., by using visual fraction models and equations to represent the problem).	5.AT.2: Solve real-world problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators (e.g., by using visual fraction models and equations to represent the problem). Use benchmark fractions and number sense of fractions to estimate mentally and assess whether the answer is reasonable.
		5.AT.3: Solve real-world problems involving multiplication of fractions, including mixed numbers (e.g., by using visual fraction models and equations to represent the problem).
		5.AT.4: Solve real-world problems involving division of unit fractions by non zero whole numbers, and division of whole numbers by unit fractions (e.g., by using visual fraction models and equations to represent the problem).
		5.AT.5: Solve real-world problems involving addition, subtraction, mutliplication, and division with decimals to hundredths, including problems that involve money in decimal notation (e.g. by using equations to represent the problem).
		5.AT.6: Graph points with whole number coordinates on a coordinate plane. Explain how the coordinates relate the point as the distance from the origin on each axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y -axis and y coordinate).
		5.AT.7: Represent real-world problems and equations by graphing ordered pairs in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.

Geometry		
Third Grade	Fourth Grade	Fifth Grade
3.G.1: Identify and describe the following: cube, sphere, prism, pyramid, cone, and cylinder.		
3.G.2: Understand that shapes (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize and draw rhombuses, rectangles, and squares as examples of quadrilaterals. Recognize and draw examples of quadrilaterals that do not belong to any of these subcategories.	4.G.5: Classify triangles and quadrilaterals based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles (right, acute, obtuse).	5.G.2: Identify and classify polygons including quadrilaterals, pentagons, hexagons, and triangles (equilateral, isosceles, scalene, right, acute and obtuse) based on angle measures and sides. Classify polygons in a hierarchy based on properties.
3.G.3: Identify, describe and draw points, lines and line segments using appropriate tools (e.g., ruler, straightedge, and technology), and use these terms when describing two-dimensional shapes.	4.G.1: Identify, describe, and draw parallelograms, rhombuses, and trapezoids using appropriate tools (e.g., ruler, straightedge and technology).	
	4.G.3: Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint.	5.G.1: Identify, describe, and draw triangles (right, acute, obtuse) and circles using appropriate tools (e.g., ruler or straightedge, compass and technology). Understand the relationship between radius and diameter.
	4.G.4: Identify, describe, and draw rays, angles (right, acute, obtuse), and perpendicular and parallel lines using appropriate tools (e.g., ruler, straightedge and technology). Identify these in two-dimensional figures.	
3.G.4: Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole ($1 / 2,1 / 3,1 / 4,1 / 6,1 / 8$).	4.G.2: Recognize and draw lines of symmetry in two-dimensional figures. Identify figures that have lines of symmetry.	

Measurement		
Third Grade	Fourth Grade	Fifth Grade
3.M.1: Estimate and measure the mass of objects in grams (g) and kilograms (kg) and the volume of objects in quarts (qt), gallons (gal), and liters (I). Add, subtract, multiply, or divide to solve one-step realworld problems involving masses or volumes that are given in the same units (e.g., by using drawings, such as a beaker with a measurement scale, to represent the problem).	4.M.2: Know relative sizes of measurement units within one system of units, including km, m, $\mathrm{cm} ; \mathrm{kg}, \mathrm{g} ; \mathrm{lb}, \mathrm{oz} ; \mathrm{l}, \mathrm{ml} ; \mathrm{hr}, \mathrm{min}$, sec. Express measurements in a larger unit in terms of a smaller unit within a single system of measurement. Record measurement equivalents in a two-column table.	5.M.1: Convert among different-sized standard measurement units within a given measurement system, and use these conversions in solving multi-step real-world problems.
	4.M.3: Use the four operations (addition, subtraction, multiplication and division) to solve realworld problems involving distances, intervals of time, volumes, masses of objects, and money. Include addition and subtraction problems involving simple fractions and problems that require expressing measurements given in a larger unit in terms of a smaller unit.	
3.M.2: Choose and use appropriate units and tools to estimate and measure length, weight, and temperature. Estimate and measure length to a quarter-inch, weight in pounds, and temperature in degrees Celsius and Fahrenheit.	4.M.1: Measure length to the nearest quarter-inch, eighth-inch, and millimeter.	
3.M.3: Tell and write time to the nearest minute from analog clocks, using a.m. and p.m., and measure time intervals in minutes. Solve realworld problems involving addition and subtraction of time intervals in minutes.		
3.M.4: Find the value of any collection of coins and bills. Write amounts less than a dollar using the $¢$ symbol and write larger amounts using the \$ symbol in the form of dollars and cents (e.g., \$4.59). Solve real-world problems to determine whether there is enough money to make a purchase.		
3.M.5: Find the area of a rectangle with whole-number side lengths by modeling with unit squares, and show that the area is the same as would be found by multiplying the side lengths. Identify and draw rectangles with the same perimeter and different areas or with the same area and different perimeters.	4.M.4: Apply the area and perimeter formulas for rectangles to solve real-world problems and other mathematical problems. Recognize area as additive and find the area of complex shapes composed of rectangles by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts; apply this technique to solve real-world problems and other mathematical problems involving shapes.	5.M.2: Find the area of a rectangle with fractional side lengths by modeling with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.
3.M.6: Multiply side lengths to find areas of rectangles with wholenumber side lengths to solve real-world problems and other mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning.		5.M.3: Develop and use formulas for the area of triangles, parallelograms and trapezoids. Solve real-world and other mathematical problems that involve perimeter and area of triangles, parallelograms and trapezoids, using appropriate units for measures.
3.M.7: Find perimeters of polygons given the side lengths or by finding an unknown side length.		
	4.M.5: Understand that an angle is measured with reference to a circle, with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. Understand an angle that turns through $1 / 360$ of a circle is called a "one-degree angle," and can be used to measure other angles. Understand an angle that turns through n one-degree angles is said to have an angle measure of n degrees.	
	4.M.6: Measure angles in whole-number degrees using appropriate tools. Sketch angles of specified measure.	
		5.M.4: Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths or multiplying the height by the area of the base.
		5.M.5: Apply the formulas $\mathrm{V}=\mathrm{I} \times \mathrm{w} \times \mathrm{h}$ and $\mathrm{V}=\mathrm{B} \times \mathrm{h}$ for right rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths to solve real-world problems and other mathematical problems.
		5.M.6: Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real-world problems and other mathematical problems.

Data Analysis (and Statistics in Gr.5)		
Third Grade	Fourth Grade	Fifth Grade
3.DA.1: Create scaled picture graphs, scaled bar graphs, and frequency tables to represent a data set-including data collected through observations, surveys, and experiments-with several categories. Solve one- and two-step "how many more" and "how many less" problems regarding the data and make predictions based on the data.	4.DA.1: Formulate questions that can be addressed with data. Use observations, surveys, and experiments to collect, represent, and interpret the data using tables (including frequency tables), line plots, and bar graphs.	5.DS.1: Formulate questions that can be addressed with data and make predictions about the data. Use observations, surveys, and experiments to collect, represent, and interpret the data using tables (including frequency tables), line plots, bar graphs, and line graphs. Recognize the differences in representing categorical and numerical data.
3.DA.2: Generate measurement data by measuring lengths with rulers to the nearest quarter of an inch. Display the data by making a line plot, where the horizontal scale is marked off in appropriate units, such as whole numbers, halves, or quarters.	4.DA.2: Make a line plot to display a data set of measurements in fractions of a unit ($1 / 2,1 / 4$, $1 / 8)$. Solve problems involving addition and subtraction of fractions by using data displayed in line plots.	
	4.DA.3: Interpret data displayed in a circle graph.	
		5.DS.2: Understand and use measures of center (mean and median) and frequency (mode) to describe a data set.

